Ouroboros/Scripts/snake_part.gd

303 lines
9.6 KiB
GDScript

extends Area2D
class_name SnakePart
const TILE_SIZE = 20
enum PartTypes {HEAD, BODY, TAIL}
enum States {ALIVE, DEAD, OUROBOROS, OLD_OUROBOROS}
var part_type : PartTypes = PartTypes.HEAD
var state : States = States.ALIVE
var current_direction : Vector2 = Vector2.RIGHT
var inputs : Dictionary[String, Vector2] = {"right": Vector2.RIGHT,
"left": Vector2.LEFT,
"up": Vector2.UP,
"down": Vector2.DOWN}
@onready
var raycast_right : RayCast2D = $RightRayCast2D
@onready
var raycast_left : RayCast2D = $LeftRayCast2D
@onready
var raycast_up : RayCast2D = $UpRayCast2D
@onready
var raycast_down : RayCast2D = $DownRayCast2D
var snake_part_obj : PackedScene = preload("res://Scenes/snake_part.tscn")
@onready
var timer_ref : Timer = $"../Timer"
var next_part : SnakePart = null
var skip_next_move_propagation : bool = false
var queued_growth : int = 21
signal on_movement(new_dir)
signal on_death
signal on_ouroboros
func _ready() -> void:
if part_type == PartTypes.HEAD:
# Add to group for easy access from other nodes
add_to_group("Head")
# Attach clock
var timer : Node = get_tree().get_first_node_in_group("GameClock")
if timer is Timer:
timer.timeout.connect(process_movement.bind(Vector2.ZERO))
# Set up a body part
var body = snake_part_obj.instantiate()
body.part_type = PartTypes.BODY
body.position = (position - current_direction * TILE_SIZE).snapped(Vector2.ONE * TILE_SIZE)
next_part = body
get_parent().add_child.call_deferred(body)
on_movement.connect(body.process_movement)
on_death.connect(body.lose_game)
on_ouroboros.connect(body.ouroboros)
# Set up a tail part
var tail = snake_part_obj.instantiate()
tail.part_type = PartTypes.TAIL
tail.position = (position - current_direction * TILE_SIZE * 2).snapped(Vector2.ONE * TILE_SIZE)
body.next_part = tail
get_parent().add_child.call_deferred(tail)
body.on_movement.connect(tail.process_movement)
on_death.connect(tail.lose_game)
on_ouroboros.connect(tail.ouroboros)
else:
# Free raycasts if we don't need them (consider only loading them in for the head for performance if needed)
raycast_down.queue_free()
raycast_up.queue_free()
raycast_left.queue_free()
raycast_right.queue_free()
# TODO: Optimise this!
func generate_spawn_grid() -> Array[Vector2]:
var spawn_grid : Array[Vector2] = []
# Determine the level limits
var level : Area2D = get_tree().get_first_node_in_group("Level")
var x_bounds : Vector2 = level.position.x * Vector2.ONE + Vector2(-TILE_SIZE, TILE_SIZE) * level.scale.x / 2
var y_bounds : Vector2 = level.position.y * Vector2.ONE + Vector2(-TILE_SIZE, TILE_SIZE) * level.scale.y / 2
var possible_x : Array = range(x_bounds.x, x_bounds.y, TILE_SIZE)
var possible_y : Array = range(y_bounds.x, y_bounds.y, TILE_SIZE)
# Flood fill all possibilities until we get an inside to use
for x in possible_x:
for y in possible_y:
var start_position : Vector2 = Vector2(x, y).snapped(Vector2.ONE * TILE_SIZE)
spawn_grid.clear()
if !check_position_for_snake(start_position) and flood_fill(spawn_grid, start_position, x_bounds, y_bounds):
GridManager.current_allowed_spawns = spawn_grid
return spawn_grid
GridManager.current_allowed_spawns = spawn_grid
return spawn_grid
func flood_fill(positions : Array[Vector2], new_position : Vector2, x_bounds : Vector2, y_bounds : Vector2) -> bool:
var directions : Array[Vector2] = [Vector2.DOWN, Vector2.LEFT, Vector2.UP, Vector2.RIGHT]
var possible_x : Array = range(x_bounds.x, x_bounds.y, TILE_SIZE)
var possible_y : Array = range(y_bounds.x, y_bounds.y, TILE_SIZE)
var inside : bool = true
for direction in directions:
var test_position : Vector2 = (new_position + direction * TILE_SIZE).snapped(Vector2.ONE * TILE_SIZE)
if not int(test_position.x) in possible_x or not int(test_position.y) in possible_y:
inside = false
if not test_position in positions and int(test_position.x) in possible_x and int(test_position.y) in possible_y and !check_position_for_snake(test_position):
positions.append(test_position)
inside = inside and flood_fill(positions, test_position, x_bounds, y_bounds)
return inside
func check_position_for_snake(query_position : Vector2) -> bool:
var obstacles : Array[Node] = get_tree().get_nodes_in_group("BlocksSpawn")
for obstacle in obstacles:
if obstacle is SnakePart:
if obstacle.state == States.OUROBOROS and obstacle.position == query_position:
return true
return false
func process_movement(new_direction : Vector2) -> void:
# Only alive snakes can move
if state != States.ALIVE:
return
# The head needs to check if we are about to collide with something
if part_type == PartTypes.HEAD:
check_movement()
if queued_growth:
extend()
# Only alive snakes can move
if state != States.ALIVE:
return
# Update the position of this part
position = (position + current_direction * TILE_SIZE).snapped(Vector2.ONE * TILE_SIZE)
# Tell the next part to move and give it the direction we are moving
if !skip_next_move_propagation:
on_movement.emit(current_direction)
skip_next_move_propagation = false
# Unless we are the head, change our direction to the direction given
if new_direction != Vector2.ZERO:
current_direction = new_direction
func check_movement() -> void:
# Get the correct raycast for the direction we are moving
var raycast_to_use : RayCast2D
if current_direction == Vector2.RIGHT:
raycast_to_use = raycast_right
elif current_direction == Vector2.LEFT:
raycast_to_use = raycast_left
elif current_direction == Vector2.UP:
raycast_to_use = raycast_up
elif current_direction == Vector2.DOWN:
raycast_to_use = raycast_down
# Look using the raycast for anything to collide with
var object_in_path : Object = raycast_to_use.get_collider()
# If we found nothing, stop processing collision
if object_in_path == null:
return
# If we found a snake part, then either end the game or perform an ouroboros maneouvre
if object_in_path is SnakePart:
if object_in_path.state == States.ALIVE:
match object_in_path.part_type:
PartTypes.BODY:
lose_game()
PartTypes.TAIL:
ouroboros()
else:
lose_game()
if object_in_path is Fruit:
queued_growth += object_in_path.growth_amount
object_in_path.respawn()
func extend() -> void:
# Remove old connection to previous next part
on_movement.disconnect(next_part.process_movement)
# Set up a body part to be in the chain
var new_body = snake_part_obj.instantiate()
new_body.part_type = PartTypes.BODY
new_body.position = (position).snapped(Vector2.ONE * TILE_SIZE)
get_parent().add_child(new_body)
on_movement.connect(new_body.process_movement)
new_body.on_movement.connect(next_part.process_movement)
on_death.connect(new_body.lose_game)
on_ouroboros.connect(new_body.ouroboros)
new_body.next_part = next_part
# Set direction of new part
new_body.current_direction = current_direction
# Update reference to next part
next_part = new_body
# Mark the next movement to not propagate the movement down the chain
skip_next_move_propagation = true
# Mark the growth step as done
queued_growth -= 1
func lose_game() -> void:
# You lose!
print("Game lost")
state = States.DEAD
on_death.emit()
func ouroboros() -> void:
print("You have achieved the ouroboros!")
if state == States.OUROBOROS:
state = States.OLD_OUROBOROS
elif state == States.ALIVE:
state = States.OUROBOROS
on_ouroboros.emit()
# The head can spawn a new snake
if part_type == PartTypes.HEAD:
get_tree().get_first_node_in_group("GameClockPause").start(1)
get_tree().get_first_node_in_group("GameClock").stop()
spawn_new_snake()
func spawn_new_snake() -> void:
# Find out where we can spawn a snake
#var start = Time.get_ticks_usec()
var all_spawn_positions : Array[Vector2] = generate_spawn_grid().duplicate()
#var end = Time.get_ticks_usec()
#var worker_time = (end-start)/1000000.0
#print(worker_time)
# We cannot spawn too close to a snake on the left, so add a condition
var spawn_positions : Array[Vector2] = []
for pos in all_spawn_positions:
if (pos + Vector2.LEFT * TILE_SIZE).snapped(Vector2.ONE * TILE_SIZE) in all_spawn_positions and \
(pos + Vector2.LEFT * TILE_SIZE * 2).snapped(Vector2.ONE * TILE_SIZE) in all_spawn_positions:
spawn_positions.append(pos)
var slightly_preferred_spawns : Array[Vector2] = []
for pos in spawn_positions:
if (pos + Vector2.RIGHT * TILE_SIZE).snapped(Vector2.ONE * TILE_SIZE) in all_spawn_positions:
slightly_preferred_spawns.append(pos)
var most_preferred_spawns : Array[Vector2] = []
for pos in slightly_preferred_spawns:
if (pos + Vector2.UP * TILE_SIZE).snapped(Vector2.ONE * TILE_SIZE) in all_spawn_positions and \
(pos + Vector2.DOWN * TILE_SIZE).snapped(Vector2.ONE * TILE_SIZE) in all_spawn_positions:
most_preferred_spawns.append(pos)
if !most_preferred_spawns.is_empty():
spawn_positions = most_preferred_spawns
elif !slightly_preferred_spawns.is_empty():
spawn_positions = slightly_preferred_spawns
# If there is no room to spawn a snake, we lose
if spawn_positions.is_empty():
lose_game()
return
# Pick a position
var chosen_position : Vector2 = spawn_positions.pick_random()
# Spawn in the new snake
var new_head = snake_part_obj.instantiate()
new_head.position = chosen_position.snapped(Vector2.ONE * TILE_SIZE)
get_parent().add_child(new_head)
new_head.on_ouroboros.connect(ouroboros)
func _unhandled_input(event: InputEvent) -> void:
# Change direction if we are the head
if event is InputEventKey and part_type == PartTypes.HEAD:
for dir in inputs.keys():
if event.is_action_pressed(dir):
current_direction = inputs[dir]
# If we leave the arena
func _on_level_area_exited(_area: Area2D) -> void:
lose_game()